Computer Science > Human-Computer Interaction
[Submitted on 19 Mar 2024]
Title:Effects of Automated Misinformation Warning Labels on the Intents to Like, Comment and Share Posts
View PDF HTML (experimental)Abstract:With fact-checking by professionals being difficult to scale on social media, algorithmic techniques have been considered. However, it is uncertain how the public may react to labels by automated fact-checkers. In this study, we investigate the use of automated warning labels derived from misinformation detection literature and investigate their effects on three forms of post engagement. Focusing on political posts, we also consider how partisanship affects engagement. In a two-phases within-subjects experiment with 200 participants, we found that the generic warnings suppressed intents to comment on and share posts, but not on the intent to like them. Furthermore, when different reasons for the labels were provided, their effects on post engagement were inconsistent, suggesting that the reasons could have undesirably motivated engagement instead. Partisanship effects were observed across the labels with higher engagement for politically congruent posts. We discuss the implications on the design and use of automated warning labels.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.