Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Mar 2024]
Title:Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization
View PDF HTML (experimental)Abstract:Domain shift is a formidable issue in Machine Learning that causes a model to suffer from performance degradation when tested on unseen domains. Federated Domain Generalization (FedDG) attempts to train a global model using collaborative clients in a privacy-preserving manner that can generalize well to unseen clients possibly with domain shift. However, most existing FedDG methods either cause additional privacy risks of data leakage or induce significant costs in client communication and computation, which are major concerns in the Federated Learning paradigm. To circumvent these challenges, here we introduce a novel architectural method for FedDG, namely gPerXAN, which relies on a normalization scheme working with a guiding regularizer. In particular, we carefully design Personalized eXplicitly Assembled Normalization to enforce client models selectively filtering domain-specific features that are biased towards local data while retaining discrimination of those features. Then, we incorporate a simple yet effective regularizer to guide these models in directly capturing domain-invariant representations that the global model's classifier can leverage. Extensive experimental results on two benchmark datasets, i.e., PACS and Office-Home, and a real-world medical dataset, Camelyon17, indicate that our proposed method outperforms other existing methods in addressing this particular problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.