Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Mar 2024 (v1), last revised 4 Nov 2024 (this version, v2)]
Title:F-OAL: Forward-only Online Analytic Learning with Fast Training and Low Memory Footprint in Class Incremental Learning
View PDF HTML (experimental)Abstract:Online Class Incremental Learning (OCIL) aims to train models incrementally, where data arrive in mini-batches, and previous data are not accessible. A major challenge in OCIL is Catastrophic Forgetting, i.e., the loss of previously learned knowledge. Among existing baselines, replay-based methods show competitive results but requires extra memory for storing exemplars, while exemplar-free (i.e., data need not be stored for replay in production) methods are resource-friendly but often lack accuracy. In this paper, we propose an exemplar-free approach--Forward-only Online Analytic Learning (F-OAL). Unlike traditional methods, F-OAL does not rely on back-propagation and is forward-only, significantly reducing memory usage and computational time. Cooperating with a pre-trained frozen encoder with Feature Fusion, F-OAL only needs to update a linear classifier by recursive least square. This approach simultaneously achieves high accuracy and low resource consumption. Extensive experiments on benchmark datasets demonstrate F-OAL's robust performance in OCIL scenarios. Code is available at this https URL.
Submission history
From: Huiping Zhuang [view email][v1] Sat, 23 Mar 2024 07:39:13 UTC (162 KB)
[v2] Mon, 4 Nov 2024 08:48:10 UTC (101 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.