Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Mar 2024]
Title:Panonut360: A Head and Eye Tracking Dataset for Panoramic Video
View PDF HTML (experimental)Abstract:With the rapid development and widespread application of VR/AR technology, maximizing the quality of immersive panoramic video services that match users' personal preferences and habits has become a long-standing challenge. Understanding the saliency region where users focus, based on data collected with HMDs, can promote multimedia encoding, transmission, and quality assessment. At the same time, large-scale datasets are essential for researchers and developers to explore short/long-term user behavior patterns and train AI models related to panoramic videos. However, existing panoramic video datasets often include low-frequency user head or eye movement data through short-term videos only, lacking sufficient data for analyzing users' Field of View (FoV) and generating video saliency regions.
Driven by these practical factors, in this paper, we present a head and eye tracking dataset involving 50 users (25 males and 25 females) watching 15 panoramic videos. The dataset provides details on the viewport and gaze attention locations of users. Besides, we present some statistics samples extracted from the dataset. For example, the deviation between head and eye movements challenges the widely held assumption that gaze attention decreases from the center of the FoV following a Gaussian distribution. Our analysis reveals a consistent downward offset in gaze fixations relative to the FoV in experimental settings involving multiple users and videos. That's why we name the dataset Panonut, a saliency weighting shaped like a donut. Finally, we also provide a script that generates saliency distributions based on given head or eye coordinates and pre-generated saliency distribution map sets of each video from the collected eye tracking data.
The dataset is available on website: this https URL.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.