Computer Science > Artificial Intelligence
[Submitted on 27 Mar 2024]
Title:Identification and Uses of Deep Learning Backbones via Pattern Mining
View PDF HTML (experimental)Abstract:Deep learning is extensively used in many areas of data mining as a black-box method with impressive results. However, understanding the core mechanism of how deep learning makes predictions is a relatively understudied problem. Here we explore the notion of identifying a backbone of deep learning for a given group of instances. A group here can be instances of the same class or even misclassified instances of the same class. We view each instance for a given group as activating a subset of neurons and attempt to find a subgraph of neurons associated with a given concept/group. We formulate this problem as a set cover style problem and show it is intractable and presents a highly constrained integer linear programming (ILP) formulation. As an alternative, we explore a coverage-based heuristic approach related to pattern mining, and show it converges to a Pareto equilibrium point of the ILP formulation. Experimentally we explore these backbones to identify mistakes and improve performance, explanation, and visualization. We demonstrate application-based results using several challenging data sets, including Bird Audio Detection (BAD) Challenge and Labeled Faces in the Wild (LFW), as well as the classic MNIST data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.