Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 27 Mar 2024 (v1), last revised 26 Sep 2024 (this version, v2)]
Title:HEMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator
View PDFAbstract:Computational analysis of multiplexed immunofluorescence histology data is emerging as an important method for understanding the tumour micro-environment in cancer. This work presents HEMIT, a dataset designed for translating Hematoxylin and Eosin (H&E) sections to multiplex-immunohistochemistry (mIHC) images, featuring DAPI, CD3, and panCK markers. Distinctively, HEMIT's mIHC images are multi-component and cellular-level aligned with H&E, enriching supervised stain translation tasks. To our knowledge, HEMIT is the first publicly available cellular-level aligned dataset that enables H&E to multi-target mIHC image translation. This dataset provides the computer vision community with a valuable resource to develop novel computational methods which have the potential to gain new insights from H&E slide archives.
We also propose a new dual-branch generator architecture, using residual Convolutional Neural Networks (CNNs) and Swin Transformers which achieves better translation outcomes than other popular algorithms. When evaluated on HEMIT, it outperforms pix2pixHD, pix2pix, U-Net, and ResNet, achieving the highest overall score on key metrics including the Structural Similarity Index Measure (SSIM), Pearson correlation score (R), and Peak signal-to-noise Ratio (PSNR). Additionally, downstream analysis has been used to further validate the quality of the generated mIHC images. These results set a new benchmark in the field of stain translation tasks.
Submission history
From: Chang Bian [view email][v1] Wed, 27 Mar 2024 12:24:20 UTC (36,249 KB)
[v2] Thu, 26 Sep 2024 18:25:32 UTC (24,970 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.