Computer Science > Robotics
[Submitted on 31 Mar 2024 (v1), last revised 15 Mar 2025 (this version, v4)]
Title:An Active Perception Game for Robust Information Gathering
View PDF HTML (experimental)Abstract:Active perception approaches select future viewpoints by using some estimate of the information gain. An inaccurate estimate can be detrimental in critical situations, e.g., locating a person in distress. However the true information gained can only be calculated post hoc, i.e., after the observation is realized. We present an approach to estimate the discrepancy between the estimated information gain (which is the expectation over putative future observations while neglecting correlations among them) and the true information gain. The key idea is to analyze the mathematical relationship between active perception and the estimation error of the information gain in a game-theoretic setting. Using this, we develop an online estimation approach that achieves sub-linear regret (in the number of time-steps) for the estimation of the true information gain and reduces the sub-optimality of active perception systems. We demonstrate our approach for active perception using a comprehensive set of experiments on: (a) different types of environments, including a quadrotor in a photorealistic simulation, real-world robotic data, and real-world experiments with ground robots exploring indoor and outdoor scenes; (b) different types of robotic perception data; and (c) different map representations. On average, our approach reduces information gain estimation errors by 42%, increases the information gain by 7%, PSNR by 5%, and semantic accuracy (measured as the number of objects that are localized correctly) by 6%. In real-world experiments with a Jackal ground robot, our approach demonstrated complex trajectories to explore occluded regions.
Submission history
From: Siming He [view email][v1] Sun, 31 Mar 2024 18:51:52 UTC (20,552 KB)
[v2] Thu, 26 Sep 2024 14:18:03 UTC (5,774 KB)
[v3] Thu, 31 Oct 2024 02:07:10 UTC (5,774 KB)
[v4] Sat, 15 Mar 2025 23:08:34 UTC (5,776 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.