Computer Science > Software Engineering
[Submitted on 1 Apr 2024]
Title:Large Language Model Evaluation Via Multi AI Agents: Preliminary results
View PDF HTML (experimental)Abstract:As Large Language Models (LLMs) have become integral to both research and daily operations, rigorous evaluation is crucial. This assessment is important not only for individual tasks but also for understanding their societal impact and potential risks. Despite extensive efforts to examine LLMs from various perspectives, there is a noticeable lack of multi-agent AI models specifically designed to evaluate the performance of different LLMs. To address this gap, we introduce a novel multi-agent AI model that aims to assess and compare the performance of various LLMs. Our model consists of eight distinct AI agents, each responsible for retrieving code based on a common description from different advanced language models, including GPT-3.5, GPT-3.5 Turbo, GPT-4, GPT-4 Turbo, Google Bard, LLAMA, and Hugging Face. Our developed model utilizes the API of each language model to retrieve code for a given high-level description. Additionally, we developed a verification agent, tasked with the critical role of evaluating the code generated by its counterparts. We integrate the HumanEval benchmark into our verification agent to assess the generated code's performance, providing insights into their respective capabilities and efficiencies. Our initial results indicate that the GPT-3.5 Turbo model's performance is comparatively better than the other models. This preliminary analysis serves as a benchmark, comparing their performances side by side. Our future goal is to enhance the evaluation process by incorporating the Massively Multitask Benchmark for Python (MBPP) benchmark, which is expected to further refine our assessment. Additionally, we plan to share our developed model with twenty practitioners from various backgrounds to test our model and collect their feedback for further improvement.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.