Computer Science > Machine Learning
[Submitted on 1 Apr 2024 (v1), last revised 5 May 2024 (this version, v2)]
Title:Energy-based Model for Accurate Shapley Value Estimation in Interpretable Deep Learning Predictive Modeling
View PDF HTML (experimental)Abstract:As a favorable tool for explainable artificial intelligence (XAI), Shapley value has been widely used to interpret deep learning based predictive models. However, accurate and efficient estimation of Shapley value is difficult since the computation load grows exponentially with the increase of input features. Most existing accelerated estimation methods have to compromise on estimation accuracy with efficiency. In this article, we present EmSHAP(Energy-based model for Shapley value estimation) to estimate the expectation of Shapley contribution function under arbitrary subset of features given the rest. The energy-based model estimates the conditional density in the Shapley contribution function, which involves an energy network for approximating the unnormalized conditional density and a GRU (Gated Recurrent Unit) network for approximating the partition function. The GRU network maps the input features onto a hidden space to eliminate the impact of input orderings. In order to theoretically evaluate the performance of different Shapley value estimation methods, Theorems 1, 2 and 3 analyzed the error bounds of EmSHAP as well as two state-of-the-art methods, namely KernelSHAP and VAEAC. It is proved that EmSHAP has tighter error bound than KernelSHAP and VAEAC. Finally, case studies on two application examples show the enhanced estimation accuracy of EmSHAP.
Submission history
From: Cheng Lu [view email][v1] Mon, 1 Apr 2024 12:19:33 UTC (4,486 KB)
[v2] Sun, 5 May 2024 05:28:56 UTC (1,717 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.