Computer Science > Machine Learning
[Submitted on 2 Apr 2024 (v1), last revised 4 Apr 2024 (this version, v2)]
Title:Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks
View PDF HTML (experimental)Abstract:Deep Learning (DL) has advanced various fields by extracting complex patterns from large datasets. However, the computational demands of DL models pose environmental and resource challenges. Deep shift neural networks (DSNNs) offer a solution by leveraging shift operations to reduce computational complexity at inference. Following the insights from standard DNNs, we are interested in leveraging the full potential of DSNNs by means of AutoML techniques. We study the impact of hyperparameter optimization (HPO) to maximize DSNN performance while minimizing resource consumption. Since this combines multi-objective (MO) optimization with accuracy and energy consumption as potentially complementary objectives, we propose to combine state-of-the-art multi-fidelity (MF) HPO with multi-objective optimization. Experimental results demonstrate the effectiveness of our approach, resulting in models with over 80\% in accuracy and low computational cost. Overall, our method accelerates efficient model development while enabling sustainable AI applications.
Submission history
From: Leona Hennig [view email][v1] Tue, 2 Apr 2024 14:03:37 UTC (425 KB)
[v2] Thu, 4 Apr 2024 10:54:04 UTC (427 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.