Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 3 Apr 2024]
Title:MOPAR: A Model Partitioning Framework for Deep Learning Inference Services on Serverless Platforms
View PDF HTML (experimental)Abstract:With its elastic power and a pay-as-you-go cost model, the deployment of deep learning inference services (DLISs) on serverless platforms is emerging as a prevalent trend. However, the varying resource requirements of different layers in DL models hinder resource utilization and increase costs, when DLISs are deployed as a single function on serverless platforms. To tackle this problem, we propose a model partitioning framework called MOPAR. This work is based on the two resource usage patterns of DLISs: global differences and local similarity, due to the presence of resource dominant (RD) operators and layer stacking. Considering these patterns, MOPAR adopts a hybrid approach that initially divides the DL model vertically into multiple slices composed of similar layers to improve resource efficiency. Slices containing RD operators are further partitioned into multiple sub-slices, enabling parallel optimization to reduce inference latency. Moreover, MOPAR comprehensively employs data compression and share-memory techniques to offset the additional time introduced by communication between slices. We implement a prototype of MOPAR and evaluate its efficacy using four categories of 12 DL models on OpenFaaS and AWS Lambda. The experiment results show that MOPAR can improve the resource efficiency of DLISs by 27.62\% on average, while reducing latency by about 5.52\%. Furthermore, based on Lambda's pricing, the cost of running DLISs is reduced by about 2.58 $\times$ using MOPAR.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.