Computer Science > Information Theory
[Submitted on 3 Apr 2024]
Title:Computationally Efficient Unsupervised Deep Learning for Robust Joint AP Clustering and Beamforming Design in Cell-Free Systems
View PDF HTML (experimental)Abstract:In this paper, we consider robust joint access point (AP) clustering and beamforming design with imperfect channel state information (CSI) in cell-free systems. Specifically, we jointly optimize AP clustering and beamforming with imperfect CSI to simultaneously maximize the worst-case sum rate and minimize the number of AP clustering under power constraint and the sparsity constraint of AP clustering. By transformations, the semi-infinite constraints caused by the imperfect CSI are converted into more tractable forms for facilitating a computationally efficient unsupervised deep learning algorithm. In addition, to further reduce the computational complexity, a computationally effective unsupervised deep learning algorithm is proposed to implement robust joint AP clustering and beamforming design with imperfect CSI in cell-free systems. Numerical results demonstrate that the proposed unsupervised deep learning algorithm achieves a higher worst-case sum rate under a smaller number of AP clustering with computational efficiency.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.