Computer Science > Computation and Language
[Submitted on 9 Apr 2024]
Title:SurveyAgent: A Conversational System for Personalized and Efficient Research Survey
View PDF HTML (experimental)Abstract:In the rapidly advancing research fields such as AI, managing and staying abreast of the latest scientific literature has become a significant challenge for researchers. Although previous efforts have leveraged AI to assist with literature searches, paper recommendations, and question-answering, a comprehensive support system that addresses the holistic needs of researchers has been lacking. This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers. SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level. This system stands out by offering a unified platform that supports researchers through various stages of their literature review process, facilitated by a conversational interface that prioritizes user interaction and personalization. Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.