Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Apr 2024]
Title:Scaling Multi-Camera 3D Object Detection through Weak-to-Strong Eliciting
View PDF HTML (experimental)Abstract:The emergence of Multi-Camera 3D Object Detection (MC3D-Det), facilitated by bird's-eye view (BEV) representation, signifies a notable progression in 3D object detection. Scaling MC3D-Det training effectively accommodates varied camera parameters and urban landscapes, paving the way for the MC3D-Det foundation model. However, the multi-view fusion stage of the MC3D-Det method relies on the ill-posed monocular perception during training rather than surround refinement ability, leading to what we term "surround refinement degradation". To this end, our study presents a weak-to-strong eliciting framework aimed at enhancing surround refinement while maintaining robust monocular perception. Specifically, our framework employs weakly tuned experts trained on distinct subsets, and each is inherently biased toward specific camera configurations and scenarios. These biased experts can learn the perception of monocular degeneration, which can help the multi-view fusion stage to enhance surround refinement abilities. Moreover, a composite distillation strategy is proposed to integrate the universal knowledge of 2D foundation models and task-specific information. Finally, for MC3D-Det joint training, the elaborate dataset merge strategy is designed to solve the problem of inconsistent camera numbers and camera parameters. We set up a multiple dataset joint training benchmark for MC3D-Det and adequately evaluated existing methods. Further, we demonstrate the proposed framework brings a generalized and significant boost over multiple baselines. Our code is at \url{this https URL}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.