Computer Science > Software Engineering
[Submitted on 12 Apr 2024]
Title:Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward
View PDFAbstract:While Large Language Models (LLMs) have seen widespread applications across numerous fields, their limited interpretability poses concerns regarding their safe operations from multiple aspects, e.g., truthfulness, robustness, and fairness. Recent research has started developing quality assurance methods for LLMs, introducing techniques such as offline detector-based or uncertainty estimation methods. However, these approaches predominantly concentrate on post-generation analysis, leaving the online safety analysis for LLMs during the generation phase an unexplored area. To bridge this gap, we conduct in this work a comprehensive evaluation of the effectiveness of existing online safety analysis methods on LLMs. We begin with a pilot study that validates the feasibility of detecting unsafe outputs in the early generation process. Following this, we establish the first publicly available benchmark of online safety analysis for LLMs, including a broad spectrum of methods, models, tasks, datasets, and evaluation metrics. Utilizing this benchmark, we extensively analyze the performance of state-of-the-art online safety analysis methods on both open-source and closed-source LLMs. This analysis reveals the strengths and weaknesses of individual methods and offers valuable insights into selecting the most appropriate method based on specific application scenarios and task requirements. Furthermore, we also explore the potential of using hybridization methods, i.e., combining multiple methods to derive a collective safety conclusion, to enhance the efficacy of online safety analysis for LLMs. Our findings indicate a promising direction for the development of innovative and trustworthy quality assurance methodologies for LLMs, facilitating their reliable deployments across diverse domains.
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.