Computer Science > Machine Learning
[Submitted on 14 Apr 2024]
Title:Model Failure or Data Corruption? Exploring Inconsistencies in Building Energy Ratings with Self-Supervised Contrastive Learning
View PDF HTML (experimental)Abstract:Building Energy Rating (BER) stands as a pivotal metric, enabling building owners, policymakers, and urban planners to understand the energy-saving potential through improving building energy efficiency. As such, enhancing buildings' BER levels is expected to directly contribute to the reduction of carbon emissions and promote climate improvement. Nonetheless, the BER assessment process is vulnerable to missing and inaccurate measurements. In this study, we introduce \texttt{CLEAR}, a data-driven approach designed to scrutinize the inconsistencies in BER assessments through self-supervised contrastive learning. We validated the effectiveness of \texttt{CLEAR} using a dataset representing Irish building stocks. Our experiments uncovered evidence of inconsistent BER assessments, highlighting measurement data corruption within this real-world dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.