Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 21 Apr 2024 (v1), last revised 2 Jun 2024 (this version, v2)]
Title:BC-MRI-SEG: A Breast Cancer MRI Tumor Segmentation Benchmark
View PDF HTML (experimental)Abstract:Binary breast cancer tumor segmentation with Magnetic Resonance Imaging (MRI) data is typically trained and evaluated on private medical data, which makes comparing deep learning approaches difficult. We propose a benchmark (BC-MRI-SEG) for binary breast cancer tumor segmentation based on publicly available MRI datasets. The benchmark consists of four datasets in total, where two datasets are used for supervised training and evaluation, and two are used for zero-shot evaluation. Additionally we compare state-of-the-art (SOTA) approaches on our benchmark and provide an exhaustive list of available public breast cancer MRI datasets. The source code has been made available at this https URL.
Submission history
From: Anthony Bilic [view email][v1] Sun, 21 Apr 2024 19:42:28 UTC (614 KB)
[v2] Sun, 2 Jun 2024 16:29:39 UTC (614 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.