Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Apr 2024 (v1), last revised 5 Sep 2024 (this version, v2)]
Title:UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition
View PDF HTML (experimental)Abstract:The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at this https URL.
Submission history
From: Bin Wang [view email][v1] Tue, 23 Apr 2024 17:39:27 UTC (2,167 KB)
[v2] Thu, 5 Sep 2024 15:42:25 UTC (5,968 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.