Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Apr 2024 (v1), last revised 3 Aug 2024 (this version, v2)]
Title:Large Multi-modality Model Assisted AI-Generated Image Quality Assessment
View PDF HTML (experimental)Abstract:Traditional deep neural network (DNN)-based image quality assessment (IQA) models leverage convolutional neural networks (CNN) or Transformer to learn the quality-aware feature representation, achieving commendable performance on natural scene images. However, when applied to AI-Generated images (AGIs), these DNN-based IQA models exhibit subpar performance. This situation is largely due to the semantic inaccuracies inherent in certain AGIs caused by uncontrollable nature of the generation process. Thus, the capability to discern semantic content becomes crucial for assessing the quality of AGIs. Traditional DNN-based IQA models, constrained by limited parameter complexity and training data, struggle to capture complex fine-grained semantic features, making it challenging to grasp the existence and coherence of semantic content of the entire image. To address the shortfall in semantic content perception of current IQA models, we introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model, which utilizes semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts. Moreover, it employs a mixture of experts (MoE) structure to dynamically integrate the semantic information with the quality-aware features extracted by traditional DNN-based IQA models. Comprehensive experiments conducted on two AI-generated content datasets, AIGCQA-20k and AGIQA-3k show that MA-AGIQA achieves state-of-the-art performance, and demonstrate its superior generalization capabilities on assessing the quality of AGIs. Code is available at this https URL.
Submission history
From: Puyi Wang [view email][v1] Sat, 27 Apr 2024 02:40:36 UTC (1,800 KB)
[v2] Sat, 3 Aug 2024 02:49:36 UTC (1,705 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.