Quantum Physics
[Submitted on 28 Apr 2024]
Title:The power of shallow-depth Toffoli and qudit quantum circuits
View PDF HTML (experimental)Abstract:The relevance of shallow-depth quantum circuits has recently increased, mainly due to their applicability to near-term devices. In this context, one of the main goals of quantum circuit complexity is to find problems that can be solved by quantum shallow circuits but require more computational resources classically.
Our first contribution in this work is to prove new separations between classical and quantum constant-depth circuits. Firstly, we show a separation between constant-depth quantum circuits with quantum advice $\mathsf{QNC}^0/\mathsf{qpoly}$, and $\mathsf{AC}^0[p]$, which is the class of classical constant-depth circuits with unbounded-fan in and $\pmod{p}$ gates. In addition, we show a separation between $\mathsf{QAC}^0$, which additionally has Toffoli gates with unbounded control, and $\mathsf{AC}^0[p]$. This establishes the first such separation for a shallow-depth quantum class that does not involve quantum fan-out gates.
Secondly, we consider $\mathsf{QNC}^0$ circuits with infinite-size gate sets. We show that these circuits, along with (classical or quantum) prime modular gates, can implement threshold gates, showing that $\mathsf{QNC}^0[p]=\mathsf{QTC}^0$. Finally, we also show that in the infinite-size gateset case, these quantum circuit classes for higher-dimensional Hilbert spaces do not offer any advantage to standard qubit implementations.
Submission history
From: Michael Oliveira [view email][v1] Sun, 28 Apr 2024 07:44:27 UTC (2,992 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.