Computer Science > Multimedia
[Submitted on 8 May 2024]
Title:Audio Matters Too! Enhancing Markerless Motion Capture with Audio Signals for String Performance Capture
View PDF HTML (experimental)Abstract:In this paper, we touch on the problem of markerless multi-modal human motion capture especially for string performance capture which involves inherently subtle hand-string contacts and intricate movements. To fulfill this goal, we first collect a dataset, named String Performance Dataset (SPD), featuring cello and violin performances. The dataset includes videos captured from up to 23 different views, audio signals, and detailed 3D motion annotations of the body, hands, instrument, and bow. Moreover, to acquire the detailed motion annotations, we propose an audio-guided multi-modal motion capture framework that explicitly incorporates hand-string contacts detected from the audio signals for solving detailed hand poses. This framework serves as a baseline for string performance capture in a completely markerless manner without imposing any external devices on performers, eliminating the potential of introducing distortion in such delicate movements. We argue that the movements of performers, particularly the sound-producing gestures, contain subtle information often elusive to visual methods but can be inferred and retrieved from audio cues. Consequently, we refine the vision-based motion capture results through our innovative audio-guided approach, simultaneously clarifying the contact relationship between the performer and the instrument, as deduced from the audio. We validate the proposed framework and conduct ablation studies to demonstrate its efficacy. Our results outperform current state-of-the-art vision-based algorithms, underscoring the feasibility of augmenting visual motion capture with audio modality. To the best of our knowledge, SPD is the first dataset for musical instrument performance, covering fine-grained hand motion details in a multi-modal, large-scale collection.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.