Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 May 2024]
Title:Intelligent Duty Cycling Management and Wake-up for Energy Harvesting IoT Networks with Correlated Activity
View PDF HTML (experimental)Abstract:This paper presents an approach for energy-neutral Internet of Things (IoT) scenarios where the IoT devices (IoTDs) rely entirely on their energy harvesting capabilities to sustain operation. We use a Markov chain to represent the operation and transmission states of the IoTDs, a modulated Poisson process to model their energy harvesting process, and a discrete-time Markov chain to model their battery state. The aim is to efficiently manage the duty cycling of the IoTDs, so as to prolong their battery life and reduce instances of low-energy availability. We propose a duty-cycling management based on K- nearest neighbors, aiming to strike a trade-off between energy efficiency and detection accuracy. This is done by incorporating spatial and temporal correlations among IoTDs' activity, as well as their energy harvesting capabilities. We also allow the base station to wake up specific IoTDs if more information about an event is needed upon initial detection. Our proposed scheme shows significant improvements in energy savings and performance, with up to 11 times lower misdetection probability and 50\% lower energy consumption for high-density scenarios compared to a random duty cycling benchmark.
Submission history
From: David Ernesto Ruiz-Guirola [view email][v1] Fri, 10 May 2024 10:16:27 UTC (815 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.