Computer Science > Machine Learning
[Submitted on 11 May 2024]
Title:Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks
View PDF HTML (experimental)Abstract:Dynamic graphs are ubiquitous in the real world, yet there is a lack of suitable theoretical frameworks to effectively extend existing static graph models into the temporal domain. Additionally, for link prediction tasks on discrete dynamic graphs, the requirement of substantial GPU memory to store embeddings of all nodes hinders the scalability of existing models. In this paper, we introduce an Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG). By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes). Subsequently, by introducing a graph denoising problem with the assumption of temporal decayed smoothing, we integrate Hawkes process theory into Graph Neural Networks to model the generated multi-graph. Furthermore, based on the multi-graph, we propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart. Our experiments, conducted on eight distinct dynamic graph datasets for future link prediction tasks, revealed that SFDyG generally surpasses related methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.