Computer Science > Human-Computer Interaction
[Submitted on 14 May 2024]
Title:AI-Resilient Interfaces
View PDF HTML (experimental)Abstract:AI is powerful, but it can make choices that result in objective errors, contextually inappropriate outputs, and disliked options. We need AI-resilient interfaces that help people be resilient to the AI choices that are not right, or not right for them. To support this goal, interfaces need to help users notice and have the context to appropriately judge those AI choices. Existing human-AI interaction guidelines recommend efficient user dismissal, modification, or otherwise efficient recovery from AI choices that a user does not like. However, in order to recover from AI choices, the user must notice them first. This can be difficult. For example, when generating summaries of long documents, a system's exclusion of a detail that is critically important to the user is hard for the user to notice. That detail can be hiding in a wall of text in the original document, and the existence of a summary may tempt the user not to read the original document as carefully. Once noticed, judging AI choices well can also be challenging. The interface may provide very little information that contextualizes the choices, and the user may fall back on assumptions when deciding whether to dismiss, modify, or otherwise recover from an AI choice. Building on prior work, this paper defines key aspects of AI-resilient interfaces, illustrated with examples. Designing interfaces for increased AI-resilience of users will improve AI safety, usability, and utility. This is especially critical where AI-powered systems are used for context- and preference-dominated open-ended AI-assisted tasks, like ideating, summarizing, searching, sensemaking, and the reading and writing of text or code.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.