Computer Science > Sound
[Submitted on 14 May 2024 (v1), last revised 13 Aug 2024 (this version, v3)]
Title:Towards Robust Audio Deepfake Detection: A Evolving Benchmark for Continual Learning
View PDF HTML (experimental)Abstract:The rise of advanced large language models such as GPT-4, GPT-4o, and the Claude family has made fake audio detection increasingly challenging. Traditional fine-tuning methods struggle to keep pace with the evolving landscape of synthetic speech, necessitating continual learning approaches that can adapt to new audio while retaining the ability to detect older types. Continual learning, which acts as an effective tool for detecting newly emerged deepfake audio while maintaining performance on older types, lacks a well-constructed and user-friendly evaluation framework. To address this gap, we introduce EVDA, a benchmark for evaluating continual learning methods in deepfake audio detection. EVDA includes classic datasets from the Anti-Spoofing Voice series, Chinese fake audio detection series, and newly generated deepfake audio from models like GPT-4 and GPT-4o. It supports various continual learning techniques, such as Elastic Weight Consolidation (EWC), Learning without Forgetting (LwF), and recent methods like Regularized Adaptive Weight Modification (RAWM) and Radian Weight Modification (RWM). Additionally, EVDA facilitates the development of robust algorithms by providing an open interface for integrating new continual learning methods
Submission history
From: Xiaohui Zhang [view email][v1] Tue, 14 May 2024 13:37:13 UTC (227 KB)
[v2] Wed, 15 May 2024 06:52:13 UTC (1 KB) (withdrawn)
[v3] Tue, 13 Aug 2024 05:28:24 UTC (230 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.