Computer Science > Networking and Internet Architecture
[Submitted on 17 May 2024]
Title:Optimal Service Placement, Request Routing and CPU Sizing in Cooperative Mobile Edge Computing Networks for Delay-Sensitive Applications
View PDF HTML (experimental)Abstract:We study joint optimization of service placement, request routing, and CPU sizing in a cooperative MEC system. The problem is considered from the perspective of the service provider (SP), which delivers heterogeneous MEC-enabled delay-sensitive services, and needs to pay for the used resources to the mobile network operators and the cloud provider, while earning revenue from the served requests. We formulate the problem of maximizing the SP's total profit subject to the computation, storage, and communication constraints of each edge node and end-to-end delay requirements of the services as a mixed-integer non-convex optimization problem, and prove it to be NP-hard.
To tackle the challenges in solving the problem, we first introduce a design trade-off parameter for different delay requirements of each service, which maintains flexibility in prioritizing them, and transform the original optimization problem by the new delay constraints. Then, by exploiting a hidden convexity, we reformulate the delay constraints into an equivalent form. Next, to handle the challenge of the complicating (integer) variables, using primal decomposition, we decompose the problem into an equivalent form of master and inner sub-problems over the mixed and real variables, respectively. We then employ a cutting-plane approach for building up adequate representations of the extremal value of the inner problem as a function of the complicating variables and the set of values of the complicating variables for which the inner problem is feasible. Finally, we propose a solution strategy based on generalized Benders decomposition and prove its convergence to the optimal solution within a limited number of iterations. Extensive simulation results demonstrate that the proposed scheme significantly outperforms the existing mechanisms in terms of the SP's profit, cache hit ratio, running time, and end-to-end delay.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.