Computer Science > Sound
[Submitted on 20 May 2024 (v1), last revised 30 May 2024 (this version, v2)]
Title:Neighborhood Attention Transformer with Progressive Channel Fusion for Speaker Verification
View PDF HTML (experimental)Abstract:Transformer-based architectures for speaker verification typically require more training data than ECAPA-TDNN. Therefore, recent work has generally been trained on VoxCeleb1&2. We propose a backbone network based on self-attention, which can achieve competitive results when trained on VoxCeleb2 alone. The network alternates between neighborhood attention and global attention to capture local and global features, then aggregates features of different hierarchical levels, and finally performs attentive statistics pooling. Additionally, we employ a progressive channel fusion strategy to expand the receptive field in the channel dimension as the network deepens. We trained the proposed PCF-NAT model on VoxCeleb2 and evaluated it on VoxCeleb1 and the validation sets of VoxSRC. The EER and minDCF of the shallow PCF-NAT are on average more than 20% lower than those of similarly sized ECAPA-TDNN. Deep PCF-NAT achieves an EER lower than 0.5% on VoxCeleb1-O. The code and models are publicly available at this https URL.
Submission history
From: Nian Li [view email][v1] Mon, 20 May 2024 13:55:19 UTC (706 KB)
[v2] Thu, 30 May 2024 02:37:51 UTC (706 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.