Computer Science > Robotics
[Submitted on 21 May 2024 (v1), last revised 5 Jun 2024 (this version, v2)]
Title:One-Shot Imitation Learning with Invariance Matching for Robotic Manipulation
View PDF HTML (experimental)Abstract:Learning a single universal policy that can perform a diverse set of manipulation tasks is a promising new direction in robotics. However, existing techniques are limited to learning policies that can only perform tasks that are encountered during training, and require a large number of demonstrations to learn new tasks. Humans, on the other hand, often can learn a new task from a single unannotated demonstration. In this work, we propose the Invariance-Matching One-shot Policy Learning (IMOP) algorithm. In contrast to the standard practice of learning the end-effector's pose directly, IMOP first learns invariant regions of the state space for a given task, and then computes the end-effector's pose through matching the invariant regions between demonstrations and test scenes. Trained on the 18 RLBench tasks, IMOP achieves a success rate that outperforms the state-of-the-art consistently, by 4.5% on average over the 18 tasks. More importantly, IMOP can learn a novel task from a single unannotated demonstration, and without any fine-tuning, and achieves an average success rate improvement of $11.5\%$ over the state-of-the-art on 22 novel tasks selected across nine categories. IMOP can also generalize to new shapes and learn to manipulate objects that are different from those in the demonstration. Further, IMOP can perform one-shot sim-to-real transfer using a single real-robot demonstration.
Submission history
From: Xinyu Zhang [view email][v1] Tue, 21 May 2024 20:01:03 UTC (25,326 KB)
[v2] Wed, 5 Jun 2024 01:11:10 UTC (26,753 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.