Computer Science > Computation and Language
[Submitted on 23 May 2024]
Title:Semantic-guided Prompt Organization for Universal Goal Hijacking against LLMs
View PDF HTML (experimental)Abstract:With the rising popularity of Large Language Models (LLMs), assessing their trustworthiness through security tasks has gained critical importance. Regarding the new task of universal goal hijacking, previous efforts have concentrated solely on optimization algorithms, overlooking the crucial role of the prompt. To fill this gap, we propose a universal goal hijacking method called POUGH that incorporates semantic-guided prompt processing strategies. Specifically, the method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes the prompts. Once the prompts are organized sequentially, the method employs an iterative optimization algorithm to generate the universal fixed suffix for the prompts. Experiments conducted on four popular LLMs and ten types of target responses verified the effectiveness of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.