Computer Science > Computation and Language
[Submitted on 23 May 2024 (v1), last revised 30 Oct 2024 (this version, v4)]
Title:Representation Noising: A Defence Mechanism Against Harmful Finetuning
View PDF HTML (experimental)Abstract:Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning. In this work, we propose Representation Noising (RepNoise), a defence mechanism that operates even when attackers have access to the weights. RepNoise works by removing information about harmful representations such that it is difficult to recover them during fine-tuning. Importantly, our defence is also able to generalize across different subsets of harm that have not been seen during the defence process as long as they are drawn from the same distribution of the attack set. Our method does not degrade the general capability of LLMs and retains the ability to train the model on harmless tasks. We provide empirical evidence that the efficacy of our defence lies in its ``depth'': the degree to which information about harmful representations is removed across all layers of the LLM. We also find areas where RepNoise still remains ineffective and highlight how those limitations can inform future research.
Submission history
From: Domenic Rosati [view email][v1] Thu, 23 May 2024 13:51:55 UTC (1,423 KB)
[v2] Mon, 7 Oct 2024 16:01:49 UTC (1,440 KB)
[v3] Mon, 28 Oct 2024 16:37:06 UTC (1,440 KB)
[v4] Wed, 30 Oct 2024 22:58:40 UTC (1,440 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.