Computer Science > Human-Computer Interaction
[Submitted on 24 May 2024]
Title:Coaching Copilot: Blended Form of an LLM-Powered Chatbot and a Human Coach to Effectively Support Self-Reflection for Leadership Growth
View PDF HTML (experimental)Abstract:Chatbots' role in fostering self-reflection is now widely recognized, especially in inducing users' behavior change. While the benefits of 24/7 availability, scalability, and consistent responses have been demonstrated in contexts such as healthcare and tutoring to help one form a new habit, their utilization in coaching necessitating deeper introspective dialogue to induce leadership growth remains unexplored. This paper explores the potential of such a chatbot powered by recent Large Language Models (LLMs) in collaboration with professional coaches in the field of executive coaching. Through a design workshop with them and two weeks of user study involving ten coach-client pairs, we explored the feasibility and nuances of integrating chatbots to complement human coaches. Our findings highlight the benefits of chatbots' ubiquity and reasoning capabilities enabled by LLMs while identifying their limitations and design necessities for effective collaboration between human coaches and chatbots. By doing so, this work contributes to the foundation for augmenting one's self-reflective process with prevalent conversational agents through the human-in-the-loop approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.