Statistics > Machine Learning
[Submitted on 24 May 2024]
Title:Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
View PDF HTML (experimental)Abstract:This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology, assuming only finite-energy neural activations; and a novel representor theory for neural networks in terms of a matrix-valued kernel. The first model is exact (un-approximated) and global, casting the neural network as an elements in a reproducing kernel Banach space (RKBS); we use this model to provide tight bounds on Rademacher complexity. The second model is exact and local, casting the change in neural network function resulting from a bounded change in weights and biases (ie. a training step) in reproducing kernel Hilbert space (RKHS) in terms of a local-intrinsic neural kernel (LiNK). This local model provides insight into model adaptation through tight bounds on Rademacher complexity of network adaptation. We also prove that the neural tangent kernel (NTK) is a first-order approximation of the LiNK kernel. Finally, and noting that the LiNK does not provide a representor theory for technical reasons, we present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK). This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models. Throughout the paper (a) feedforward ReLU networks and (b) residual networks (ResNet) are used as illustrative examples.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.