Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 May 2024 (v1), last revised 5 Sep 2024 (this version, v3)]
Title:Open-Vocabulary SAM3D: Towards Training-free Open-Vocabulary 3D Scene Understanding
View PDF HTML (experimental)Abstract:Open-vocabulary 3D scene understanding presents a significant challenge in the field. Recent works have sought to transfer knowledge embedded in vision-language models from 2D to 3D domains. However, these approaches often require prior knowledge from specific 3D scene datasets, limiting their applicability in open-world scenarios. The Segment Anything Model (SAM) has demonstrated remarkable zero-shot segmentation capabilities, prompting us to investigate its potential for comprehending 3D scenes without training. In this paper, we introduce OV-SAM3D, a training-free method that contains a universal framework for understanding open-vocabulary 3D scenes. This framework is designed to perform understanding tasks for any 3D scene without requiring prior knowledge of the scene. Specifically, our method is composed of two key sub-modules: First, we initiate the process by generating superpoints as the initial 3D prompts and refine these prompts using segment masks derived from SAM. Moreover, we then integrate a specially designed overlapping score table with open tags from the Recognize Anything Model (RAM) to produce final 3D instances with open-world labels. Empirical evaluations on the ScanNet200 and nuScenes datasets demonstrate that our approach surpasses existing open-vocabulary methods in unknown open-world environments.
Submission history
From: Hanchen Tai [view email][v1] Fri, 24 May 2024 14:07:57 UTC (4,876 KB)
[v2] Fri, 21 Jun 2024 08:11:38 UTC (4,876 KB)
[v3] Thu, 5 Sep 2024 01:54:38 UTC (1,660 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.