Statistics > Machine Learning
[Submitted on 26 May 2024]
Title:Training-Conditional Coverage Bounds under Covariate Shift
View PDF HTML (experimental)Abstract:Training-conditional coverage guarantees in conformal prediction concern the concentration of the error distribution, conditional on the training data, below some nominal level. The conformal prediction methodology has recently been generalized to the covariate shift setting, namely, the covariate distribution changes between the training and test data. In this paper, we study the training-conditional coverage properties of a range of conformal prediction methods under covariate shift via a weighted version of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality tailored for distribution change. The result for the split conformal method is almost assumption-free, while the results for the full conformal and jackknife+ methods rely on strong assumptions including the uniform stability of the training algorithm.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.