Computer Science > Artificial Intelligence
[Submitted on 30 May 2024]
Title:Efficient Stimuli Generation using Reinforcement Learning in Design Verification
View PDF HTML (experimental)Abstract:The increasing design complexity of System-on-Chips (SoCs) has led to significant verification challenges, particularly in meeting coverage targets within a timely manner. At present, coverage closure is heavily dependent on constrained random and coverage driven verification methodologies where the randomized stimuli are bounded to verify certain scenarios and to reach coverage goals. This process is said to be exhaustive and to consume a lot of project time. In this paper, a novel methodology is proposed to generate efficient stimuli with the help of Reinforcement Learning (RL) to reach the maximum code coverage of the Design Under Verification (DUV). Additionally, an automated framework is created using metamodeling to generate a SystemVerilog testbench and an RL environment for any given design. The proposed approach is applied to various designs and the produced results proves that the RL agent provides effective stimuli to achieve code coverage faster in comparison with baseline random simulations. Furthermore, various RL agents and reward schemes are analyzed in our work.
Submission history
From: Deepak Narayan Gadde [view email][v1] Thu, 30 May 2024 08:23:04 UTC (384 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.