Computer Science > Machine Learning
[Submitted on 31 May 2024]
Title:Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning
View PDFAbstract:In the recent paradigm of Federated Learning (FL), multiple clients train a shared model while keeping their local data private. Resource constraints of clients and communication costs pose major problems for training large models in FL. On the one hand, addressing the resource limitations of the clients, sparse training has proven to be a powerful tool in the centralized setting. On the other hand, communication costs in FL can be addressed by local training, where each client takes multiple gradient steps on its local data. Recent work has shown that local training can provably achieve the optimal accelerated communication complexity [Mishchenko et al., 2022]. Hence, one would like an accelerated sparse training algorithm. In this work we show that naive integration of sparse training and acceleration at the server fails, and how to fix it by letting the clients perform these tasks appropriately. We introduce Sparse-ProxSkip, our method developed for the nonconvex setting, inspired by RandProx [Condat and Richtárik, 2022], which provably combines sparse training and acceleration in the convex setting. We demonstrate the good performance of Sparse-ProxSkip in extensive experiments.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.