Computer Science > Computation and Language
[Submitted on 2 Jun 2024 (v1), last revised 1 Nov 2024 (this version, v3)]
Title:BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-n Sampling
View PDF HTML (experimental)Abstract:This paper concerns the problem of aligning samples from large language models to human preferences using best-of-$n$ sampling, where we draw $n$ samples, rank them, and return the best one. We consider two fundamental problems. First: what is the relationship between best-of-$n$ and approaches to alignment that train LLMs to output samples with a high expected reward (e.g., RLHF or DPO)? To answer this, we embed both the best-of-$n$ distribution and the sampling distributions learned by alignment procedures in a common class of tiltings of the base LLM distribution. We then show that, within this class, best-of-$n$ is essentially optimal in terms of the trade-off between win-rate against the base model vs KL distance from the base model. That is, best-of-$n$ is the best choice of alignment distribution if the goal is to maximize win rate. However, best-of-$n$ requires drawing $n$ samples for each inference, a substantial cost. To avoid this, the second problem we consider is how to fine-tune a LLM to mimic the best-of-$n$ sampling distribution. We derive BoNBoN Alignment to achieve this by exploiting the special structure of the best-of-$n$ distribution. Experiments show that BoNBoN alignment yields substantial improvements in producing a model that is preferred to the base policy while minimally affecting off-target aspects.
Submission history
From: Lin Gui [view email][v1] Sun, 2 Jun 2024 18:42:57 UTC (875 KB)
[v2] Wed, 5 Jun 2024 05:23:40 UTC (876 KB)
[v3] Fri, 1 Nov 2024 20:02:32 UTC (1,549 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.