Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jun 2024 (v1), last revised 14 Dec 2024 (this version, v2)]
Title:RoboMamba: Efficient Vision-Language-Action Model for Robotic Reasoning and Manipulation
View PDF HTML (experimental)Abstract:A fundamental objective in robot manipulation is to enable models to comprehend visual scenes and execute actions. Although existing Vision-Language-Action (VLA) models for robots can handle a range of basic tasks, they still face challenges in two areas: (1) insufficient reasoning ability to tackle complex tasks, and (2) high computational costs for VLA model fine-tuning and inference. The recently proposed state space model (SSM) known as Mamba demonstrates promising capabilities in non-trivial sequence modeling with linear inference complexity. Inspired by this, we introduce RoboMamba, an end-to-end robotic VLA model that leverages Mamba to deliver both robotic reasoning and action capabilities, while maintaining efficient fine-tuning and inference. Specifically, we first integrate the vision encoder with Mamba, aligning visual tokens with language embedding through co-training, empowering our model with visual common sense and robotic-related reasoning. To further equip RoboMamba with SE(3) pose prediction abilities, we explore an efficient fine-tuning strategy with a simple policy head. We find that once RoboMamba possesses sufficient reasoning capability, it can acquire manipulation skills with minimal fine-tuning parameters (0.1\% of the model) and time. In experiments, RoboMamba demonstrates outstanding reasoning capabilities on general and robotic evaluation benchmarks. Meanwhile, our model showcases impressive pose prediction results in both simulation and real-world experiments, achieving inference speeds 3 times faster than existing VLA models. Our project web page: this https URL
Submission history
From: Jiaming Liu [view email][v1] Thu, 6 Jun 2024 17:59:47 UTC (4,198 KB)
[v2] Sat, 14 Dec 2024 18:41:03 UTC (4,388 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.