Computer Science > Machine Learning
[Submitted on 9 Jun 2024 (v1), last revised 4 Oct 2024 (this version, v4)]
Title:Grounding Continuous Representations in Geometry: Equivariant Neural Fields
View PDF HTML (experimental)Abstract:Conditional Neural Fields (CNFs) are increasingly being leveraged as continuous signal representations, by associating each data-sample with a latent variable that conditions a shared backbone Neural Field (NeF) to reconstruct the sample. However, existing CNF architectures face limitations when using this latent downstream in tasks requiring fine grained geometric reasoning, such as classification and segmentation. We posit that this results from lack of explicit modelling of geometric information (e.g. locality in the signal or the orientation of a feature) in the latent space of CNFs. As such, we propose Equivariant Neural Fields (ENFs), a novel CNF architecture which uses a geometry-informed cross-attention to condition the NeF on a geometric variable, a latent point cloud of features, that enables an equivariant decoding from latent to field. We show that this approach induces a steerability property by which both field and latent are grounded in geometry and amenable to transformation laws: if the field transforms, the latent representation transforms accordingly - and vice versa. Crucially, this equivariance relation ensures that the latent is capable of (1) representing geometric patterns faitfhully, allowing for geometric reasoning in latent space, (2) weight-sharing over similar local patterns, allowing for efficient learning of datasets of fields. We validate these main properties in a range of tasks including classification, segmentation, forecasting and reconstruction, showing clear improvement over baselines with a geometry-free latent space.
Submission history
From: David Wessels [view email][v1] Sun, 9 Jun 2024 12:16:30 UTC (2,622 KB)
[v2] Tue, 11 Jun 2024 12:45:08 UTC (3,095 KB)
[v3] Mon, 17 Jun 2024 07:28:40 UTC (3,096 KB)
[v4] Fri, 4 Oct 2024 15:00:24 UTC (3,387 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.