Computer Science > Computation and Language
[Submitted on 10 Jun 2024]
Title:Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval
View PDF HTML (experimental)Abstract:To achieve non-parametric NMT domain adaptation, $k$-Nearest-Neighbor Machine Translation ($k$NN-MT) constructs an external datastore to store domain-specific translation knowledge, which derives a $k$NN distribution to interpolate the prediction distribution of the NMT model via a linear interpolation coefficient $\lambda$. Despite its success, $k$NN retrieval at each timestep leads to substantial time overhead. To address this issue, dominant studies resort to $k$NN-MT with adaptive retrieval ($k$NN-MT-AR), which dynamically estimates $\lambda$ and skips $k$NN retrieval if $\lambda$ is less than a fixed threshold. Unfortunately, $k$NN-MT-AR does not yield satisfactory results. In this paper, we first conduct a preliminary study to reveal two key limitations of $k$NN-MT-AR: 1) the optimization gap leads to inaccurate estimation of $\lambda$ for determining $k$NN retrieval skipping, and 2) using a fixed threshold fails to accommodate the dynamic demands for $k$NN retrieval at different timesteps. To mitigate these limitations, we then propose $k$NN-MT with dynamic retrieval ($k$NN-MT-DR) that significantly extends vanilla $k$NN-MT in two aspects. Firstly, we equip $k$NN-MT with a MLP-based classifier for determining whether to skip $k$NN retrieval at each timestep. Particularly, we explore several carefully-designed scalar features to fully exert the potential of the classifier. Secondly, we propose a timestep-aware threshold adjustment method to dynamically generate the threshold, which further improves the efficiency of our model. Experimental results on the widely-used datasets demonstrate the effectiveness and generality of our model.\footnote{Our code is available at \url{this https URL}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.