Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jun 2024]
Title:AutoTVG: A New Vision-language Pre-training Paradigm for Temporal Video Grounding
View PDF HTML (experimental)Abstract:Temporal Video Grounding (TVG) aims to localize a moment from an untrimmed video given the language description. Since the annotation of TVG is labor-intensive, TVG under limited supervision has accepted attention in recent years. The great success of vision-language pre-training guides TVG to follow the traditional "pre-training + fine-tuning" paradigm, however, the pre-training process would suffer from a lack of temporal modeling and fine-grained alignment due to the difference of data nature between pre-train and test. Besides, the large gap between pretext and downstream tasks makes zero-shot testing impossible for the pre-trained model. To avoid the drawbacks of the traditional paradigm, we propose AutoTVG, a new vision-language pre-training paradigm for TVG that enables the model to learn semantic alignment and boundary regression from automatically annotated untrimmed videos. To be specific, AutoTVG consists of a novel Captioned Moment Generation (CMG) module to generate captioned moments from untrimmed videos, and TVGNet with a regression head to predict localization results. Experimental results on Charades-STA and ActivityNet Captions show that, regarding zero-shot temporal video grounding, AutoTVG achieves highly competitive performance with in-distribution methods under out-of-distribution testing, and is superior to existing pre-training frameworks with much less training data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.