Computer Science > Machine Learning
[Submitted on 13 Jun 2024]
Title:A Review of 315 Benchmark and Test Functions for Machine Learning Optimization Algorithms and Metaheuristics with Mathematical and Visual Descriptions
View PDFAbstract:In the rapidly evolving optimization and metaheuristics domains, the efficacy of algorithms is crucially determined by the benchmark (test) functions. While several functions have been developed and derived over the past decades, little information is available on the mathematical and visual description, range of suitability, and applications of many such functions. To bridge this knowledge gap, this review provides an exhaustive survey of more than 300 benchmark functions used in the evaluation of optimization and metaheuristics algorithms. This review first catalogs benchmark and test functions based on their characteristics, complexity, properties, visuals, and domain implications to offer a wide view that aids in selecting appropriate benchmarks for various algorithmic challenges. This review also lists the 25 most commonly used functions in the open literature and proposes two new, highly dimensional, dynamic and challenging functions that could be used for testing new algorithms. Finally, this review identifies gaps in current benchmarking practices and suggests directions for future research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.