Computer Science > Software Engineering
[Submitted on 16 Jun 2024]
Title:An LLM-enhanced Multi-objective Evolutionary Search for Autonomous Driving Test Scenario Generation
View PDF HTML (experimental)Abstract:The safety of Autonomous Driving Systems (ADSs) is significantly important for the implementation of autonomous vehicles (AVs). Therefore, ADSs must be evaluated thoroughly before their release and deployment to the public. How to generate diverse safety-critical test scenarios is a key task for ADS testing. This paper proposes LEADE, an LLM-enhanced scenario generation approach for ADS testing, which adopts the LLM-enhanced adaptive evolutionary search to generate safety-critical and diverse test scenarios. LEADE leverages LLM's ability in program understanding to better comprehend the scenario generation task, which generates high-quality scenarios of the first generation. LEADE adopts an adaptive multi-objective genetic algorithm to search for diverse safety-critical scenarios. To guide the search away from the local optima, LEADE formulates the evolutionary search into a QA task, which leverages LLM's ability in quantitative reasoning to generate differential seed scenarios to break out of the local optimal solutions. We implement and evaluate LEADE on industrial-grade full-stack ADS platform, Baidu Apollo. Experimental results show that LEADE can effectively and efficiently generate safety-critical scenarios and expose 10 diverse safety violations of Apollo. It outperforms two state-of-the-art search-based ADS testing techniques by identifying 4 new types of safety-critical scenarios on the same roads.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.