Computer Science > Machine Learning
[Submitted on 17 Jun 2024 (v1), last revised 18 Jun 2024 (this version, v2)]
Title:Linear Bellman Completeness Suffices for Efficient Online Reinforcement Learning with Few Actions
View PDF HTML (experimental)Abstract:One of the most natural approaches to reinforcement learning (RL) with function approximation is value iteration, which inductively generates approximations to the optimal value function by solving a sequence of regression problems. To ensure the success of value iteration, it is typically assumed that Bellman completeness holds, which ensures that these regression problems are well-specified. We study the problem of learning an optimal policy under Bellman completeness in the online model of RL with linear function approximation. In the linear setting, while statistically efficient algorithms are known under Bellman completeness (e.g., Jiang et al. (2017); Zanette et al. (2020)), these algorithms all rely on the principle of global optimism which requires solving a nonconvex optimization problem. In particular, it has remained open as to whether computationally efficient algorithms exist. In this paper we give the first polynomial-time algorithm for RL under linear Bellman completeness when the number of actions is any constant.
Submission history
From: Noah Golowich [view email][v1] Mon, 17 Jun 2024 15:24:49 UTC (81 KB)
[v2] Tue, 18 Jun 2024 04:27:49 UTC (81 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.