Computer Science > Artificial Intelligence
[Submitted on 18 Jun 2024 (v1), last revised 3 Nov 2024 (this version, v3)]
Title:InterIntent: Investigating Social Intelligence of LLMs via Intention Understanding in an Interactive Game Context
View PDF HTML (experimental)Abstract:Large language models (LLMs) have demonstrated the potential to mimic human social intelligence. However, most studies focus on simplistic and static self-report or performance-based tests, which limits the depth and validity of the analysis. In this paper, we developed a novel framework, InterIntent, to assess LLMs' social intelligence by mapping their ability to understand and manage intentions in a game setting. We focus on four dimensions of social intelligence: situational awareness, self-regulation, self-awareness, and theory of mind. Each dimension is linked to a specific game task: intention selection, intention following, intention summarization, and intention guessing. Our findings indicate that while LLMs exhibit high proficiency in selecting intentions, achieving an accuracy of 88%, their ability to infer the intentions of others is significantly weaker, trailing human performance by 20%. Additionally, game performance correlates with intention understanding, highlighting the importance of the four components towards success in this game. These findings underline the crucial role of intention understanding in evaluating LLMs' social intelligence and highlight the potential of using social deduction games as a complex testbed to enhance LLM evaluation. InterIntent contributes a structured approach to bridging the evaluation gap in social intelligence within multiplayer games.
Submission history
From: Ziyi Liu [view email][v1] Tue, 18 Jun 2024 02:02:15 UTC (4,410 KB)
[v2] Sat, 5 Oct 2024 04:24:10 UTC (4,411 KB)
[v3] Sun, 3 Nov 2024 16:15:22 UTC (4,411 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.