Computer Science > Hardware Architecture
[Submitted on 26 Jun 2024]
Title:Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Instruction Execution
View PDF HTML (experimental)Abstract:Load instructions often limit instruction-level parallelism (ILP) in modern processors due to data and resource dependences they cause. Prior techniques like Load Value Prediction (LVP) and Memory Renaming (MRN) mitigate load data dependence by predicting the data value of a load instruction. However, they fail to mitigate load resource dependence as the predicted load instruction gets executed nonetheless.
Our goal in this work is to improve ILP by mitigating both load data dependence and resource dependence. To this end, we propose a purely-microarchitectural technique called Constable, that safely eliminates the execution of load instructions. Constable dynamically identifies load instructions that have repeatedly fetched the same data from the same load address. We call such loads likely-stable. For every likely-stable load, Constable (1) tracks modifications to its source architectural registers and memory location via lightweight hardware structures, and (2) eliminates the execution of subsequent instances of the load instruction until there is a write to its source register or a store or snoop request to its load address.
Our extensive evaluation using a wide variety of 90 workloads shows that Constable improves performance by 5.1% while reducing the core dynamic power consumption by 3.4% on average over a strong baseline system that implements MRN and other dynamic instruction optimizations (e.g., move and zero elimination, constant and branch folding). In presence of 2-way simultaneous multithreading (SMT), Constable's performance improvement increases to 8.8% over the baseline system. When combined with a state-of-the-art load value predictor (EVES), Constable provides an additional 3.7% and 7.8% average performance benefit over the load value predictor alone, in the baseline system without and with 2-way SMT, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.