Computer Science > Discrete Mathematics
[Submitted on 1 Jul 2024]
Title:Immediate Neighbours of Monotone Boolean Functions
View PDF HTML (experimental)Abstract:Boolean networks constitute relevant mathematical models to study the behaviours of genetic and signalling networks. These networks define regulatory influences between molecular nodes, each being associated to a Boolean variable and a regulatory (local) function specifying its dynamical behaviour depending on its regulators. However, existing data is mostly insufficient to adequately parametrise a model, that is to uniquely define a regulatory function for each node. With the intend to support model parametrisation, this paper presents results on the set of Boolean functions compatible with a given regulatory structure, i.e. the partially ordered set of monotone non-degenerate Boolean functions. More precisely, we present original rules to obtain the direct neighbours of any function of this set. Besides a theoretical interest, presented results will enable the development of more efficient methods for Boolean network synthesis and revision, benefiting from the progressive exploration of the vicinity of regulatory functions.
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.