Computer Science > Computation and Language
[Submitted on 2 Jul 2024 (v1), last revised 9 Jul 2024 (this version, v2)]
Title:Efficient-Empathy: Towards Efficient and Effective Selection of Empathy Data
View PDF HTML (experimental)Abstract:In recent years, with the rapid advancements in large language models (LLMs), achieving excellent empathetic response capability has become a crucial prerequisite. Consequently, managing and understanding large-scale video datasets has gained increasing importance. However, empathetic data are typically trained without any quality selection, leading to inefficient data usage and wasted computational resources. Additionally, using raw data can result in low performance in empathetic dialogues. In this work, we present Efficient-Empathy, a sensibility and rationality score-based data selection algorithm that automatically selects sensibility and rationality data while discarding low-quality data. With only the sensibility data (59% of the full dataset), our trained sensibility model efficiently achieves state-of-the-art (SoTA) performance. Furthermore, with multiple data selection hyperparameters, the sensibility model demonstrates SoTA performance, showcasing the robustness of our method. By integrating sensibility and rationality data with a MoE structure, we achieve even higher performance, demonstrating the effectiveness of our Efficient-Empathy algorithm.
Submission history
From: Hao Liang [view email][v1] Tue, 2 Jul 2024 04:11:52 UTC (17,712 KB)
[v2] Tue, 9 Jul 2024 14:55:52 UTC (17,772 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.