Computer Science > Formal Languages and Automata Theory
[Submitted on 3 Jul 2024]
Title:Complex Event Recognition with Symbolic Register Transducers: Extended Technical Report
View PDF HTML (experimental)Abstract:We present a system for Complex Event Recognition (CER) based on automata. While multiple such systems have been described in the literature, they typically suffer from a lack of clear and denotational semantics, a limitation which often leads to confusion with respect to their expressive power. In order to address this issue, our system is based on an automaton model which is a combination of symbolic and register automata. We extend previous work on these types of automata, in order to construct a formalism with clear semantics and a corresponding automaton model whose properties can be formally investigated. We call such automata Symbolic Register Transducers (SRT). We show that SRT are closed under various operators, but are not in general closed under complement and they are not determinizable. However, they are closed under these operations when a window operator, quintessential in Complex Event Recognition, is used. We show how SRT can be used in CER in order to detect patterns upon streams of events, using our framework that provides declarative and compositional semantics, and that allows for a systematic treatment of such automata. For SRT to work in pattern detection, we allow them to mark events from the input stream as belonging to a complex event or not, hence the name "transducers". We also present an implementation of SRT which can perform CER. We compare our SRT-based CER engine against other state-of-the-art CER systems and show that it is both more expressive and more efficient.
Current browse context:
cs.FL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.