Computer Science > Software Engineering
[Submitted on 11 Jul 2024]
Title:eUDEVS: Executable UML with DEVS Theory of Modeling and Simulation
View PDFAbstract:Modeling and Simulation (M&S) for system design and prototyping is practiced today both in the industry and academia. M&S are two different areas altogether and have specific objectives. However, most of the times these two separate areas are taken together. The developed code is tightly woven around both the model and the underlying simulator that executes it. This constraints both the model development and the simulation engine that impacts scalability of the developed code. Furthermore, a lot of time is spent in development of a model because it needs both domain knowledge and simulation techniques, which also requires communication among users and developers. Unified Modeling Language (UML) is widely accepted in the industry, whereas Discrete Event Specification (DEVS) based modeling that separates the model and the simulator, provides a cleaner methodology to develop models and is much used in academia. DEVS today is used by engineers who understand discrete event modeling at a much detailed level and are able to translate requirements to DEVS modeling code. There have been earlier efforts to integrate UML and DEVS but they haven't succeeded in providing a transformation mechanism due to inherent differences in these two modeling paradigms. This paper presents an integrated approach towards crosstransformations between UML and DEVS using the proposed eUDEVS, which stands for executable UML based on DEVS. Further, we will also show that the obtained DEVS models belong to a specific class of DEVS models called Finite Deterministic DEVS (FD-DEVS) that is available as a W3C XML Schema in XFD-DEVS. We also put the proposed eUDEVS in a much larger unifying framework called DEVS Unified Process that allows bifurcated model-continuity based lifecycle methodology for systems M&S. Finally, we demonstrate the laid concepts with a complete example.
Submission history
From: José L. Risco-Martín [view email][v1] Thu, 11 Jul 2024 08:29:46 UTC (1,062 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.